3.15 \(\int x^3 (a+b \csc ^{-1}(c x))^2 \, dx\)

Optimal. Leaf size=107 \[ \frac {b x^3 \sqrt {1-\frac {1}{c^2 x^2}} \left (a+b \csc ^{-1}(c x)\right )}{6 c}+\frac {b x \sqrt {1-\frac {1}{c^2 x^2}} \left (a+b \csc ^{-1}(c x)\right )}{3 c^3}+\frac {1}{4} x^4 \left (a+b \csc ^{-1}(c x)\right )^2+\frac {b^2 \log (x)}{3 c^4}+\frac {b^2 x^2}{12 c^2} \]

[Out]

1/12*b^2*x^2/c^2+1/4*x^4*(a+b*arccsc(c*x))^2+1/3*b^2*ln(x)/c^4+1/3*b*x*(a+b*arccsc(c*x))*(1-1/c^2/x^2)^(1/2)/c
^3+1/6*b*x^3*(a+b*arccsc(c*x))*(1-1/c^2/x^2)^(1/2)/c

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {5223, 4410, 4185, 4184, 3475} \[ \frac {b x^3 \sqrt {1-\frac {1}{c^2 x^2}} \left (a+b \csc ^{-1}(c x)\right )}{6 c}+\frac {b x \sqrt {1-\frac {1}{c^2 x^2}} \left (a+b \csc ^{-1}(c x)\right )}{3 c^3}+\frac {1}{4} x^4 \left (a+b \csc ^{-1}(c x)\right )^2+\frac {b^2 x^2}{12 c^2}+\frac {b^2 \log (x)}{3 c^4} \]

Antiderivative was successfully verified.

[In]

Int[x^3*(a + b*ArcCsc[c*x])^2,x]

[Out]

(b^2*x^2)/(12*c^2) + (b*Sqrt[1 - 1/(c^2*x^2)]*x*(a + b*ArcCsc[c*x]))/(3*c^3) + (b*Sqrt[1 - 1/(c^2*x^2)]*x^3*(a
 + b*ArcCsc[c*x]))/(6*c) + (x^4*(a + b*ArcCsc[c*x])^2)/4 + (b^2*Log[x])/(3*c^4)

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 4184

Int[csc[(e_.) + (f_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> -Simp[((c + d*x)^m*Cot[e + f*x])/f, x]
+ Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cot[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 4185

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((c_.) + (d_.)*(x_)), x_Symbol] :> -Simp[(b^2*(c + d*x)*Cot[e + f*x]*
(b*Csc[e + f*x])^(n - 2))/(f*(n - 1)), x] + (Dist[(b^2*(n - 2))/(n - 1), Int[(c + d*x)*(b*Csc[e + f*x])^(n - 2
), x], x] - Simp[(b^2*d*(b*Csc[e + f*x])^(n - 2))/(f^2*(n - 1)*(n - 2)), x]) /; FreeQ[{b, c, d, e, f}, x] && G
tQ[n, 1] && NeQ[n, 2]

Rule 4410

Int[Cot[(a_.) + (b_.)*(x_)]^(p_.)*Csc[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> -Simp
[((c + d*x)^m*Csc[a + b*x]^n)/(b*n), x] + Dist[(d*m)/(b*n), Int[(c + d*x)^(m - 1)*Csc[a + b*x]^n, x], x] /; Fr
eeQ[{a, b, c, d, n}, x] && EqQ[p, 1] && GtQ[m, 0]

Rule 5223

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> -Dist[(c^(m + 1))^(-1), Subst[Int[(a + b*
x)^n*Csc[x]^(m + 1)*Cot[x], x], x, ArcCsc[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] && (G
tQ[n, 0] || LtQ[m, -1])

Rubi steps

\begin {align*} \int x^3 \left (a+b \csc ^{-1}(c x)\right )^2 \, dx &=-\frac {\operatorname {Subst}\left (\int (a+b x)^2 \cot (x) \csc ^4(x) \, dx,x,\csc ^{-1}(c x)\right )}{c^4}\\ &=\frac {1}{4} x^4 \left (a+b \csc ^{-1}(c x)\right )^2-\frac {b \operatorname {Subst}\left (\int (a+b x) \csc ^4(x) \, dx,x,\csc ^{-1}(c x)\right )}{2 c^4}\\ &=\frac {b^2 x^2}{12 c^2}+\frac {b \sqrt {1-\frac {1}{c^2 x^2}} x^3 \left (a+b \csc ^{-1}(c x)\right )}{6 c}+\frac {1}{4} x^4 \left (a+b \csc ^{-1}(c x)\right )^2-\frac {b \operatorname {Subst}\left (\int (a+b x) \csc ^2(x) \, dx,x,\csc ^{-1}(c x)\right )}{3 c^4}\\ &=\frac {b^2 x^2}{12 c^2}+\frac {b \sqrt {1-\frac {1}{c^2 x^2}} x \left (a+b \csc ^{-1}(c x)\right )}{3 c^3}+\frac {b \sqrt {1-\frac {1}{c^2 x^2}} x^3 \left (a+b \csc ^{-1}(c x)\right )}{6 c}+\frac {1}{4} x^4 \left (a+b \csc ^{-1}(c x)\right )^2-\frac {b^2 \operatorname {Subst}\left (\int \cot (x) \, dx,x,\csc ^{-1}(c x)\right )}{3 c^4}\\ &=\frac {b^2 x^2}{12 c^2}+\frac {b \sqrt {1-\frac {1}{c^2 x^2}} x \left (a+b \csc ^{-1}(c x)\right )}{3 c^3}+\frac {b \sqrt {1-\frac {1}{c^2 x^2}} x^3 \left (a+b \csc ^{-1}(c x)\right )}{6 c}+\frac {1}{4} x^4 \left (a+b \csc ^{-1}(c x)\right )^2+\frac {b^2 \log (x)}{3 c^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 124, normalized size = 1.16 \[ \frac {c x \left (3 a^2 c^3 x^3+2 a b \sqrt {1-\frac {1}{c^2 x^2}} \left (c^2 x^2+2\right )+b^2 c x\right )+2 b c x \csc ^{-1}(c x) \left (3 a c^3 x^3+b \sqrt {1-\frac {1}{c^2 x^2}} \left (c^2 x^2+2\right )\right )+3 b^2 c^4 x^4 \csc ^{-1}(c x)^2+4 b^2 \log (x)}{12 c^4} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*(a + b*ArcCsc[c*x])^2,x]

[Out]

(c*x*(b^2*c*x + 3*a^2*c^3*x^3 + 2*a*b*Sqrt[1 - 1/(c^2*x^2)]*(2 + c^2*x^2)) + 2*b*c*x*(3*a*c^3*x^3 + b*Sqrt[1 -
 1/(c^2*x^2)]*(2 + c^2*x^2))*ArcCsc[c*x] + 3*b^2*c^4*x^4*ArcCsc[c*x]^2 + 4*b^2*Log[x])/(12*c^4)

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 146, normalized size = 1.36 \[ \frac {3 \, b^{2} c^{4} x^{4} \operatorname {arccsc}\left (c x\right )^{2} + 3 \, a^{2} c^{4} x^{4} - 12 \, a b c^{4} \arctan \left (-c x + \sqrt {c^{2} x^{2} - 1}\right ) + b^{2} c^{2} x^{2} + 4 \, b^{2} \log \relax (x) + 6 \, {\left (a b c^{4} x^{4} - a b c^{4}\right )} \operatorname {arccsc}\left (c x\right ) + 2 \, {\left (a b c^{2} x^{2} + 2 \, a b + {\left (b^{2} c^{2} x^{2} + 2 \, b^{2}\right )} \operatorname {arccsc}\left (c x\right )\right )} \sqrt {c^{2} x^{2} - 1}}{12 \, c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arccsc(c*x))^2,x, algorithm="fricas")

[Out]

1/12*(3*b^2*c^4*x^4*arccsc(c*x)^2 + 3*a^2*c^4*x^4 - 12*a*b*c^4*arctan(-c*x + sqrt(c^2*x^2 - 1)) + b^2*c^2*x^2
+ 4*b^2*log(x) + 6*(a*b*c^4*x^4 - a*b*c^4)*arccsc(c*x) + 2*(a*b*c^2*x^2 + 2*a*b + (b^2*c^2*x^2 + 2*b^2)*arccsc
(c*x))*sqrt(c^2*x^2 - 1))/c^4

________________________________________________________________________________________

giac [B]  time = 0.39, size = 811, normalized size = 7.58 \[ \frac {1}{192} \, {\left (\frac {3 \, b^{2} x^{4} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{4} \arcsin \left (\frac {1}{c x}\right )^{2}}{c} + \frac {6 \, a b x^{4} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{4} \arcsin \left (\frac {1}{c x}\right )}{c} + \frac {3 \, a^{2} x^{4} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{4}}{c} + \frac {4 \, b^{2} x^{3} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{3} \arcsin \left (\frac {1}{c x}\right )}{c^{2}} + \frac {4 \, a b x^{3} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{3}}{c^{2}} + \frac {12 \, b^{2} x^{2} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{2} \arcsin \left (\frac {1}{c x}\right )^{2}}{c^{3}} + \frac {24 \, a b x^{2} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{2} \arcsin \left (\frac {1}{c x}\right )}{c^{3}} + \frac {12 \, a^{2} x^{2} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{2}}{c^{3}} + \frac {4 \, b^{2} x^{2} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{2}}{c^{3}} + \frac {36 \, b^{2} x {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )} \arcsin \left (\frac {1}{c x}\right )}{c^{4}} + \frac {36 \, a b x {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}}{c^{4}} + \frac {18 \, b^{2} \arcsin \left (\frac {1}{c x}\right )^{2}}{c^{5}} + \frac {36 \, a b \arcsin \left (\frac {1}{c x}\right )}{c^{5}} - \frac {128 \, b^{2} \log \relax (2)}{c^{5}} + \frac {64 \, b^{2} \log \left (2 \, \sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 2\right )}{c^{5}} - \frac {64 \, b^{2} \log \left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}{c^{5}} - \frac {64 \, b^{2} \log \left (\frac {1}{{\left | c \right |} {\left | x \right |}}\right )}{c^{5}} + \frac {18 \, a^{2}}{c^{5}} + \frac {8 \, b^{2}}{c^{5}} - \frac {36 \, b^{2} \arcsin \left (\frac {1}{c x}\right )}{c^{6} x {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}} - \frac {36 \, a b}{c^{6} x {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}} + \frac {12 \, b^{2} \arcsin \left (\frac {1}{c x}\right )^{2}}{c^{7} x^{2} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{2}} + \frac {24 \, a b \arcsin \left (\frac {1}{c x}\right )}{c^{7} x^{2} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{2}} + \frac {12 \, a^{2}}{c^{7} x^{2} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{2}} + \frac {4 \, b^{2}}{c^{7} x^{2} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{2}} - \frac {4 \, b^{2} \arcsin \left (\frac {1}{c x}\right )}{c^{8} x^{3} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{3}} - \frac {4 \, a b}{c^{8} x^{3} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{3}} + \frac {3 \, b^{2} \arcsin \left (\frac {1}{c x}\right )^{2}}{c^{9} x^{4} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{4}} + \frac {6 \, a b \arcsin \left (\frac {1}{c x}\right )}{c^{9} x^{4} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{4}} + \frac {3 \, a^{2}}{c^{9} x^{4} {\left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}^{4}}\right )} c \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arccsc(c*x))^2,x, algorithm="giac")

[Out]

1/192*(3*b^2*x^4*(sqrt(-1/(c^2*x^2) + 1) + 1)^4*arcsin(1/(c*x))^2/c + 6*a*b*x^4*(sqrt(-1/(c^2*x^2) + 1) + 1)^4
*arcsin(1/(c*x))/c + 3*a^2*x^4*(sqrt(-1/(c^2*x^2) + 1) + 1)^4/c + 4*b^2*x^3*(sqrt(-1/(c^2*x^2) + 1) + 1)^3*arc
sin(1/(c*x))/c^2 + 4*a*b*x^3*(sqrt(-1/(c^2*x^2) + 1) + 1)^3/c^2 + 12*b^2*x^2*(sqrt(-1/(c^2*x^2) + 1) + 1)^2*ar
csin(1/(c*x))^2/c^3 + 24*a*b*x^2*(sqrt(-1/(c^2*x^2) + 1) + 1)^2*arcsin(1/(c*x))/c^3 + 12*a^2*x^2*(sqrt(-1/(c^2
*x^2) + 1) + 1)^2/c^3 + 4*b^2*x^2*(sqrt(-1/(c^2*x^2) + 1) + 1)^2/c^3 + 36*b^2*x*(sqrt(-1/(c^2*x^2) + 1) + 1)*a
rcsin(1/(c*x))/c^4 + 36*a*b*x*(sqrt(-1/(c^2*x^2) + 1) + 1)/c^4 + 18*b^2*arcsin(1/(c*x))^2/c^5 + 36*a*b*arcsin(
1/(c*x))/c^5 - 128*b^2*log(2)/c^5 + 64*b^2*log(2*sqrt(-1/(c^2*x^2) + 1) + 2)/c^5 - 64*b^2*log(sqrt(-1/(c^2*x^2
) + 1) + 1)/c^5 - 64*b^2*log(1/(abs(c)*abs(x)))/c^5 + 18*a^2/c^5 + 8*b^2/c^5 - 36*b^2*arcsin(1/(c*x))/(c^6*x*(
sqrt(-1/(c^2*x^2) + 1) + 1)) - 36*a*b/(c^6*x*(sqrt(-1/(c^2*x^2) + 1) + 1)) + 12*b^2*arcsin(1/(c*x))^2/(c^7*x^2
*(sqrt(-1/(c^2*x^2) + 1) + 1)^2) + 24*a*b*arcsin(1/(c*x))/(c^7*x^2*(sqrt(-1/(c^2*x^2) + 1) + 1)^2) + 12*a^2/(c
^7*x^2*(sqrt(-1/(c^2*x^2) + 1) + 1)^2) + 4*b^2/(c^7*x^2*(sqrt(-1/(c^2*x^2) + 1) + 1)^2) - 4*b^2*arcsin(1/(c*x)
)/(c^8*x^3*(sqrt(-1/(c^2*x^2) + 1) + 1)^3) - 4*a*b/(c^8*x^3*(sqrt(-1/(c^2*x^2) + 1) + 1)^3) + 3*b^2*arcsin(1/(
c*x))^2/(c^9*x^4*(sqrt(-1/(c^2*x^2) + 1) + 1)^4) + 6*a*b*arcsin(1/(c*x))/(c^9*x^4*(sqrt(-1/(c^2*x^2) + 1) + 1)
^4) + 3*a^2/(c^9*x^4*(sqrt(-1/(c^2*x^2) + 1) + 1)^4))*c

________________________________________________________________________________________

maple [B]  time = 0.28, size = 208, normalized size = 1.94 \[ \frac {a^{2} x^{4}}{4}+\frac {b^{2} \mathrm {arccsc}\left (c x \right )^{2} x^{4}}{4}+\frac {b^{2} \mathrm {arccsc}\left (c x \right ) \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x^{3}}{6 c}+\frac {b^{2} x^{2}}{12 c^{2}}+\frac {b^{2} \mathrm {arccsc}\left (c x \right ) x \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}{3 c^{3}}-\frac {b^{2} \ln \left (\frac {1}{c x}\right )}{3 c^{4}}+\frac {a b \,x^{4} \mathrm {arccsc}\left (c x \right )}{2}+\frac {a b \,x^{3}}{6 c \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac {a b x}{6 c^{3} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac {a b}{3 c^{5} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*arccsc(c*x))^2,x)

[Out]

1/4*a^2*x^4+1/4*b^2*arccsc(c*x)^2*x^4+1/6/c*b^2*arccsc(c*x)*((c^2*x^2-1)/c^2/x^2)^(1/2)*x^3+1/12*b^2*x^2/c^2+1
/3/c^3*b^2*arccsc(c*x)*x*((c^2*x^2-1)/c^2/x^2)^(1/2)-1/3/c^4*b^2*ln(1/c/x)+1/2*a*b*x^4*arccsc(c*x)+1/6/c*a*b/(
(c^2*x^2-1)/c^2/x^2)^(1/2)*x^3+1/6/c^3*a*b/((c^2*x^2-1)/c^2/x^2)^(1/2)*x-1/3/c^5*a*b/((c^2*x^2-1)/c^2/x^2)^(1/
2)/x

________________________________________________________________________________________

maxima [B]  time = 0.77, size = 197, normalized size = 1.84 \[ \frac {1}{4} \, b^{2} x^{4} \operatorname {arccsc}\left (c x\right )^{2} + \frac {1}{4} \, a^{2} x^{4} + \frac {1}{6} \, {\left (3 \, x^{4} \operatorname {arccsc}\left (c x\right ) + \frac {c^{2} x^{3} {\left (-\frac {1}{c^{2} x^{2}} + 1\right )}^{\frac {3}{2}} + 3 \, x \sqrt {-\frac {1}{c^{2} x^{2}} + 1}}{c^{3}}\right )} a b + \frac {{\left (2 \, c^{4} x^{4} \arctan \left (1, \sqrt {c x + 1} \sqrt {c x - 1}\right ) + 2 \, c^{2} x^{2} \arctan \left (1, \sqrt {c x + 1} \sqrt {c x - 1}\right ) + {\left (c^{2} x^{2} + 2 \, \log \left (x^{2}\right )\right )} \sqrt {c x + 1} \sqrt {c x - 1} - 4 \, \arctan \left (1, \sqrt {c x + 1} \sqrt {c x - 1}\right )\right )} b^{2}}{12 \, \sqrt {c x + 1} \sqrt {c x - 1} c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arccsc(c*x))^2,x, algorithm="maxima")

[Out]

1/4*b^2*x^4*arccsc(c*x)^2 + 1/4*a^2*x^4 + 1/6*(3*x^4*arccsc(c*x) + (c^2*x^3*(-1/(c^2*x^2) + 1)^(3/2) + 3*x*sqr
t(-1/(c^2*x^2) + 1))/c^3)*a*b + 1/12*(2*c^4*x^4*arctan2(1, sqrt(c*x + 1)*sqrt(c*x - 1)) + 2*c^2*x^2*arctan2(1,
 sqrt(c*x + 1)*sqrt(c*x - 1)) + (c^2*x^2 + 2*log(x^2))*sqrt(c*x + 1)*sqrt(c*x - 1) - 4*arctan2(1, sqrt(c*x + 1
)*sqrt(c*x - 1)))*b^2/(sqrt(c*x + 1)*sqrt(c*x - 1)*c^4)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x^3\,{\left (a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )\right )}^2 \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a + b*asin(1/(c*x)))^2,x)

[Out]

int(x^3*(a + b*asin(1/(c*x)))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{3} \left (a + b \operatorname {acsc}{\left (c x \right )}\right )^{2}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*acsc(c*x))**2,x)

[Out]

Integral(x**3*(a + b*acsc(c*x))**2, x)

________________________________________________________________________________________